Janus Indices

The Janus Velocity LIBOR Indices Methodology

July 2017

Table of Contents

Introduction	3
Index Sponsor and Index Calculation Agent	3
Index Overview	4
Reference Index Calculations	4
The Janus Velocity Long LIBOR Index Calculations	6
The Janus Velocity Short LIBOR Index Calculations	8
Intra-day Index Calculation	10
Index Maintenance	11
Index Committee	14
Contact Information	16
Disclosures	17
Appendix I: Holiday Schedule	18

Introduction

This document describes in detail the Janus Velocity LIBOR Index Family Methodology. The Family consists of three Indices:

- The Janus Velocity LIBOR 1Y Index
- The Janus Velocity Long LIBOR Index
- The Janus Velocity Short LIBOR Index

The Janus Velocity LIBOR 1Y Index reflects a weighted average of the first eight¹ quarterly reference Eurodollar Futures implied yields, where each implied yield is tied to the London Interbank Offered Rate (LIBOR).

The Janus Velocity Long LIBOR Index is designed to provide a long exposure to a weighted average of the first eight quarterly reference Eurodollar Futures implied yields, where each implied yield is tied to the London Interbank Offered Rate (LIBOR). The Index is replicable; an investor holding the reference futures associated with the index at the same weights adjusted daily should realize returns similar to that of the Janus Velocity Long LIBOR Index.

The Janus Velocity Short LIBOR Index is designed to provide an inverse exposure to a weighted average of the first eight² quarterly reference Eurodollar Futures implied yields and is replicable as well; an investor holding the reference futures associated with the index at the same weights adjusted daily should realize returns similar to that of the Janus Velocity Short LIBOR Index.

The indices have been designed to approximate performance of investments in the *yield* itself, as if the yield was an asset.

The reference securities are US listed Eurodollar Futures contracts expiring in March, June, September and December, which trade on the Chicago Mercantile Exchange (CME). The Indices' Inception Date was September 30th, 2016. All data prior to this date is a backtest.

Index Sponsor and Index Calculation Agent

The Index Sponsor is Janus Index & Calculation Services LLC (JICS). As at the date of this Index Methodology, the Index Sponsor has appointed Solactive as Index Calculation Agent to calculate and publish the Indices in accordance with the Index Methodology contained in this document. The Index Sponsor may, in its sole discretion and without notice, appoint an alternative Index Calculation Agent at any time which may be the Index Sponsor or one of its Affiliates.

The Index Sponsor's determinations in respect of the Indices shall be final.

¹ The first contract rolls off two days prior to expiry, so for a brief period of time the ninth listed quarterly contract is included.

² The first contract rolls off two days prior to expiry, so for a brief period of time the ninth listed quarterly contract is included.

Index Overview

The Indices are notional rules-based proprietary indices sponsored by Janus Index & Calculation Services (the "Index Sponsor"). The Janus Velocity LIBOR Index family consists of three Indices:

- The Janus Velocity LIBOR 1Y Index
- The Janus Velocity Long LIBOR Index
- The Janus Velocity Short LIBOR Index

The Janus Velocity Long LIBOR and Short LIBOR Indices are excess return indices. The Indices are described as replicating notional positions in Eurodollar Futures because there is no actual portfolio of assets to which any person is entitled or in which any person has any ownership interest. The Indices simply references certain investment positions the performance of which is used as a reference point for the purpose of calculating Index Levels.

The Indices are calculated on Index Business Days. An Index Business Day is a weekday (1) on which the New York Stock Exchange and Chicago Mercantile Exchange are both open for trading for their regular trading sessions.³

Eurodollar Futures Prices

The closing price for each quarterly Eurodollar Futures contract on an Index Business Day is the price of the contract at the regular close of the principal trading session on the Chicago Mercantile Exchange (3:00pm ET) for that Index Business Day.⁴ Eurodollar futures prices are expressed at 100 minus (the implied 3-month (USD) LIBOR interest rate x 100).

Reference Index Calculations

Calculation of the indices begins with the calculation of the Janus Velocity LIBOR 1Y Index ("the Reference Index.") The Reference Index Level on each Scheduled Index Business Day t shall be an amount determined by the Index Calculation Agent in accordance with the formula set out below. The Reference Index Level for each Index Business Day is defined as follows:

$$L_t = Max[1,100 \times \sum_{i=1}^{M+1} w_{it} (100 - P_{i,t})]$$

where $P_{i,t}$ is the settlement price⁵ of the *i*th quarterly Eurodollar Futures contract on Index Business Day *t*, *M*=8, and w_{it} is the weight of each contract *i* on Index Business Day *t*, as defined below, with

$$\sum_{i=1}^{M+1} w_{it} = 1$$

³ Prior to June 16th, 2017, the Janus Velocity LIBOR Indices also considered London bank holidays to be index holidays.

⁴ Eurodollar Futures are "based on a \$1 million face-value, 3-month maturity Eurodollar Time Deposit. They are settled in cash on the 2nd London bank business day prior to the 3rd Wednesday of the contract month by reference to the ICE Benchmark Administration Limited (ICE) Interest Settlement Rate for three-month Eurodollar Interbank Time Deposits." (Source: CME)

⁵ For more on Settlement Prices, please see <u>http://www.cmegroup.com/confluence/display/EPICSANDBOX/Eurodollar</u>.

Calculating the Weights

At any point in time, the Reference Index Level will seek to provide an indicator of 3-month LIBOR interest rate levels through a set of Eurodollar Futures contracts. Let each quarterly Eurodollar Futures contract be denoted by the subscript *i*, where

$$i = 1 \dots M + 1$$

and M=8.

The Reference Index targets constant maturity: its weights are chosen to target a constant average maturity of the contracts. Though the Reference Index effectively considers the first eight contracts, two days prior to a Eurodollar Futures contract expiry, the Reference Index also utilizes what is, at that point, the $(M+1)^{th}$ contract. In order to target constant maturity, this requires that the weight in the front contract rolls off into the back of the curve. This is achieved by the use of three successive quarterly contracts whereby:

 F_{-1} = the prior (expired) quarterly Eurodollar Futures contract

 F_0 = the current (expiring) quarterly Eurodollar Futures contract

 F_1 = the next quarterly Eurodollar Futures contract (immediately successive to F_0)

The weights are calculated as follows.

- Define T as the tenor (in days) of F_{0.} This is calculated as the number of Scheduled Index Business Days between the F₋₁ and F₀ contract expiries (including the day of expiry).
- Define T₂ as the tenor (in days) of F₁. This is calculated as the number of Scheduled Index Business Days between the F₀ and F₁ contract expiries (including the day of expiry).
- Define τ as the number of Scheduled Index Business Days remaining in the F₀ contract until (and including) expiry.
- Define τ_2 number of Scheduled Index Business Days until the next roll date. This is calculated as $\tau 2$. If $\tau < 2$, $\tau_2 = \tau 2 + T_2$.

Scheduled Index Business Days are weekdays for which there are no holidays (as defined below) or no (1) pre-announced closings of the New York Stock Exchange or (2) preannounced closings of the Chicago Mercantile Exchange.⁶ T_2 is determined two Scheduled Index Business Days prior to F_0 expiry and is fixed at that point, regardless of future announcements of closures. Upon the immediate quarterly Eurodollar Futures contract expiry, T_2 becomes T.

If $\tau \ge 2$, the contracts from i=2 to M-1 hold the weight

$$w_{it} = \frac{1}{(M-1)}$$

The remaining weight of w_{it} is distributed between the first and M^{th} contracts whereby the weight on the front-quarterly contract is

$$w_{1t} = w_{2t} \frac{\tau_2}{T}$$

⁶ Prior to June 16th, 2017, the Janus Velocity LIBOR Indices also considered London bank holidays to be index holidays.

Note that this weight will go to zero two days prior to expiry.

The weight on Mth contract is

$$w_{Mt} = w_{2t} \frac{T - \tau_2}{T}$$

For completeness, note that when $\tau \ge 2$, $w_{M+1,t} = 0$.

If $\tau < 2$, the weights on contracts i=3 to *M* are

$$w_{it} = \frac{1}{(M-1)}$$

Here the second contract rolls to the 9th contract until those contracts roll and become the 1st and 8th contracts, respectively. The remaining weight of w_{it} is thus distributed between the second and the $(M + 1)^{th}$ contracts.

The weight on the front-quarter contract is zero,

$$w_{1t} = 0$$

the second-quarter contract is

$$w_{2t} = w_{3t} \frac{\tau_2}{T_2}$$

and the $(M + 1)^{th}$ weight is

$$w_{M+1,t} = w_{3t} \frac{T_2 - \tau_2}{T_2}$$

The Janus Velocity Long LIBOR Index Calculations

The Janus Velocity LIBOR 1Y Index is not investable, meaning that there is no sustainable strategy to invest in Eurodollar Futures contracts that will replicate the Index. This is because each day contracts are replaced in the front quarter with contracts from the back quarter. The Janus Velocity Long LIBOR Index addresses this issue, by holding a position in Eurodollar Futures contracts on each Index Business Day and then rolling the contracts the following day to maintain constant maturity.

The Janus Velocity Long LIBOR Index Level on each Index Business Day t (following the Index Start Date) shall be an amount determined by the Index Calculation Agent in accordance with the formula set out below.

Let

$$w_t = [w_{1t} \ w_{2t} \ \dots \ w_{Mt} \ w_{M+1,t}]$$

be the weight vector on any Index Business Day t. These weights are the same weights as those defined above. Define

 P_{it} = Settlement Price on Day *t* of the *i*th Quarterly Contract

and the implied yields are defined as follows:

$$Y_{it} = 100 \times (100 - P_{it})$$

Let

$$dY_{it} = Y_{it} - Y_{it-1}$$

and

$$dY_t = [dY_{1t} \ dY_{2t} \dots dY_{M+1,t}]$$

For clarity, the term subscript reflects the term as of day t. For example, if t-1 is a Eurodollar futures expiry date, then contract i on day t was contract i+1 on day t-1. In this case, Y_{it-1} should be read as the yield on today's ith contract observed on day t-1. The Index Level is denoted I_t and starts at I_0 .⁷ Further, we define an additional value, I_t^* , that reflects the value of the Index prior to transactions.

The Janus Velocity Long LIBOR Index value is updated as a function of the changes in implied yields and the number of contracts held in each quarterly expiry.

Let N_{t-1} be the total number of contracts held on day t-1. Recall that holding long positions in a Eurodollar Futures contract will have negative P&L if the change in implied yield on that contract is positive.

By establishing a short position in Eurodollar futures contracts (i.e., $-N_{t-1}$), the dollar profit on the day's positions will be:

$$\pi_{t} = -N_{t-1} \times 25 \times \sum_{i=1}^{M+1} w_{it-1} dY_{it}$$

$$\pi_{t} = -N_{t-1} \times 25 \times \left[\sum_{i=1}^{M+1} w_{it} Y_{it} - \sum_{i=1}^{M+1} w_{it-1} Y_{it-1} - \sum_{i=1}^{M+1} dw_{it} Y_{it} \right]$$

$$\pi_{t} = -N_{t-1} \times 25 \times [L_{t} - L_{t-1} - \varepsilon_{t}]$$

where $dw_{it} = w_{it} - w_{it-1}$.⁸

The term ε_t represents a roll return. By choosing the right number of contracts, we can approximate the return in the Janus Velocity LIBOR 1Y Index with the return in the Janus Velocity Long LIBOR Index, subject to the roll.

We set N_{t-1} to:

$$N_{t-1} = -\frac{I_{t-1}^*}{25 \times \hat{L}_{t-1}}$$

⁷ The Index starting value is chosen such that the Index Level is 10,000 on December 30th, 2016.

⁸ Note that a 1 point basis point change in yields is a \$25 change in the value of a contract.

where

$$\hat{L}_{t-1} = \max(100, L_{t-1})$$

and the adjusted weight vector is

$$\widehat{w}_t = -N_t w_t$$
.⁹

The Long LIBOR Index is updated according to the following formula:

$$I_t^* = I_{t-1} + 25 \cdot \sum_{i=1}^{M+1} \widehat{w}_{i,t-1} dY_{i,t}$$

To account for Eurodollar Futures spreads, this level is adjusted as follows. Define the spread on contract i on day t as

$$Spr = .005$$

Then

$$I_{t} = I_{t}^{*} - 2500 \times \sum_{i=1}^{M+1} 0.5 \times |\widehat{w}_{i,t} - \widehat{w}_{i,t-1}| \times Spr$$

The Index Return is defined as

$$R_t = \frac{I_t}{I_{t-1}} - 1$$

The Janus Velocity Short LIBOR Index Calculations

Let I_t^{Sh} be the Short LIBOR Index Level on date t.

Dollar profit on the positions held is as follows:

 $^{9}\,$ The return to the Janus Velocity Long LIBOR Index is approximately

$$\frac{\pi_t}{I_{t-1}^*} = \frac{-N_{t-1} \times 25 \times [L_t - L_{t-1} - \varepsilon_t]}{I_{t-1}^*}$$

Assuming no roll, we have an approximation:

$$\frac{\pi_t}{I_{t-1}^*} \cong \frac{-N_{t-1} \times 25 \times [L_t - L_{t-1}]}{I_{t-1}^*}$$

We wish to find N so that this return equals the return on spot:

$$\frac{\pi_t}{I_{t-1}^*} \cong \frac{-N_{t-1} \times 25 \times [L_t - L_{t-1}]}{I_{t-1}^*} = \frac{[L_t - L_{t-1}]}{L_{t-1}^*}$$

Therefore:

$$\frac{-N_{t-1} \times 25}{I_{t-1}^*} = \frac{1}{L_{t-1}}$$

And hence:

$$N_{t-1} = -\frac{I_{t-1}^*}{25 \times L_{t-1}}$$

$$\pi_t^{Sh} = -N_{t-1}^{Sh} \times 25 \times \sum_{i=1}^{M+1} w_{it-1} dY_{it}$$
$$\pi_t^{Sh} = -N_{t-1}^{Sh} \times 25 \times \left[\sum_{i=1}^{M+1} w_{it} Y_{it} - \sum_{i=1}^{M+1} w_{it-1} Y_{it-1} - \sum_{i=1}^{M+1} dw_{it} Y_{it} \right]$$
$$\pi_t^{Sh} = -N_{t-1}^{Sh} \times 25 \times [L_t - L_{t-1} - \varepsilon_t]$$

By choosing the right number of contracts, we can approximate the negative of the return in the Janus Velocity LIBOR 1Y Index with the return in the Short LIBOR Index, subject to the roll.

Using a similar methodology to solve for N_{t-1} , We set N_{t-1}^{Sh} to:

$$N_{t-1}^{Sh} = \frac{I_{t-1}^{Sh*}}{25 \times \tilde{L}_{t-1}}$$

where

$$\tilde{L}_{t-1} = \max(250, L_{t-1})$$

and the adjusted weight vector is

$$\widehat{w}_t^{Sh} = -N_t^{Sh} w_t$$

The Inverse Index is updated according to the following formula:

$$I_t^{Sh*} = I_{t-1}^{Sh} + 25 \cdot \sum_{i=1}^{M+1} \widehat{w}_{i,t-1}^{Sh} dY_{i,t}$$

As defined above, the spread on contract i on day t as

$$Spr = .005$$

Then

$$I_{t}^{Sh} = I_{t}^{Sh*} - 2500 \times \sum_{i=1}^{M+1} 0.5 \times \left| \widehat{w}_{i,t}^{Inv} - \widehat{w}_{i,t-1}^{Inv} \right| \times Spr$$

The Short LIBOR Index Return is defined as

$$R_t^{Sh} = \frac{I_t^{Sh}}{I_{t-1}^{Sh}} - 1$$

Subject to the occurrence or existence of a Disrupted Day (as defined below), the Index Levels are calculated by the Index Calculation Agent at approximately 6:30PM Eastern Time on each Index Business Day. The Index Levels are the closing levels of the Indices for the relevant Index Business Day. The Index Calculation Agent may also, but is not obliged to, calculate the level of the Index at another time on any Index Business Day or any other day with the consent of the Index Sponsor.

Intra-day Index Calculation

The value of the indices will be calculated intra-day by applying the then current market prices of the reference securities as if they were the end of day prices and following the end-of-day calculations described above.

Index Maintenance

Base Date

Both the Janus Velocity Long LIBOR and Short LIBOR Indices have been computed such that the Index Levels of both are 10,000 on December 30th, 2016.

Index Policy

Announcements

Announcements regarding changes to the indices will be made publicly available prior to the effective date of the change. All announcements will be published on the index website: indices.janushenderson.com

Holiday Schedule

The Janus Velocity LIBOR Indices will not be calculated on days when (a) the New York Stock Exchange is closed¹⁰, or (b) the Chicago Mercantile Exchange (CME) is closed.^{11,12} To avoid all doubt, please see the Appendix for a list of Holidays for upcoming calendar years.

Force Majeure

Calculation of the indices may not be possible or feasible under certain events or circumstances, including, without limitation, market disruptions, a systems failure, natural or man-made disaster, act of God, armed conflict, act of terrorism, riot or labor disruption or any similar intervening circumstance, that is beyond the reasonable control of the Index Sponsor and that the Index Sponsor determines affects the Indices or underlying markets. Upon the occurrence of any such force majeure event, the Index Sponsor may, in its discretion, elect one (or more) of the following options:

- Make such determinations and/or adjustments to the terms of the Indices as it considers appropriate to determine any closing level on any such appropriate Index Business Day; and/or
- Defer publication of the information relating to the Indices until the next Index Business Day on which it determines that no force majeure event exists; and/or
- Permanently cancel the publication of the information relating to the Indices. The Index Sponsor employs the methodology described above and its application of the methodology shall be conclusive and binding.

Market Disruption

"Disrupted Day" shall mean any Scheduled Index Business Day on which any of the events set out below occurs:

- The Chicago Mercantile Exchange or the New York Stock Exchange fails to open for trading; •
- A suspension of or limitation imposed (whether by reason of movements in price exceeding permitted limits or otherwise) on the trading on the Chicago Mercantile Exchange of Eurodollar Futures at any time during the one hour period which ends at 3pm NY Time ("the Valuation Time"); or
- An event which disrupts or impairs the ability of market participants in general to effect transactions in or to obtain market values for Eurodollar Futures contracts at any time during the one hour period which ends at the relevant Valuation Time; or

¹⁰ https://www.nyse.com/markets/hours-calendars

 ¹¹ <u>http://www.cmegroup.com/tools-information/holiday-calendar.html</u>
¹² Prior to June 16th, 2017, the Janus Velocity LIBOR Indices also considered London bank holidays to be index holidays.

 The closure of the Chicago Mercantile Exchange in respect of Eurodollar Futures contracts prior to its Scheduled Closing Time (3:00pm NY time, unless such earlier closing time is announced by the Chicago Mercantile Exchange at least one hour prior to the earlier of (i) the actual closing time for the regular trading session; and (ii) the deadline for the submission of orders to be entered into the Chicago Mercantile Exchange system for execution at the Valuation Time).

In the event of a Disrupted Day, the roll for that day is carried out on the next Scheduled Index Business Day. The rest of the scheduled roll proceeds accordingly after the completion of the next (non-disrupted) Index Business Day.

Note that all historical levels for the Janus Velocity LIBOR 1Y, Long LIBOR, and Short LIBOR Indices prior to the inception date were calculated by treating prior market disruptions as scheduled holidays.

Delisting of Futures Contracts

If one or more futures contracts included in one of the indices is no longer listed, the Index Sponsor may choose to suspend publication of any affected indices at that time.

Index Committee

The Index Committee, composed of senior Janus Henderson personnel and an external representative, is responsible for reviewing the design, composition, and calculation of the Janus Velocity LIBOR Indices, the development of new indices, and to determine changes, if any, to the index methodology.

Decisions made by the Index Committee include all matters related to index policy and maintenance. The Index Committee meets periodically to review market conditions and index performance, or on an as-needed basis to address major market developments.

The Index Committee reserves the right to exercise its discretion in making decisions with respect to any index policy or action. Index Committee internal procedures and discussions are considered to be potentially market moving and are therefore kept confidential.

Index Dissemination

Index Tickers

The indices are calculated in real-time and disseminated by the Consolidated Tape Association (CTA) every 15 seconds during the U.S. trading day. Official closing index levels are published on each index business day at approximately 6:30 PM Eastern Time and are made available on www.janusindices.com.

FTP

Daily index level information is available via FTP. Please contact the Index Sponsor for subscription information.

Contact Information

Email: qs@janushenderson.com Website: indices.janushenderson.com

17 Old Kings Highway South Suite 100 Darien, CT 06820

+1 203 992 4301

Disclosures

Janus Henderson, Janus and VelocityShares are trademarks or registered trademarks of Janus Henderson Investors. © Janus Henderson Investors. The name Janus Henderson Investors includes HGI Group Limited, Henderson Global Investors (Brand Management) Sarl and Janus International Holding LLC.

Janus Index & Calculation Services LLC ("Janus Index") is the licensor of certain trademarks, service marks and trade names of Janus Henderson Investors and of certain Indices, which are determined, composed and calculated by Janus Index without regard to the issuer of any securities which may be linked to such indices.

This document does not constitute an offer of services in jurisdictions where Janus Henderson or its affiliates do not have the necessary licenses. Janus Index receives compensation in connection with licensing its indices to third parties. All information provided by Janus Index is impersonal and not tailored to the needs of any person, entity or group of persons and is subject to change. Janus Index and its affiliates make no representation regarding the advisability of investing in any investment product that is offered by third parties and that seeks to provide an investment return based on the returns of any Janus index. A decision to invest in any such product should not be made in reliance on any of the statements set forth in this document. Prospective investors are advised to make an investment in any such product only after carefully considering the risks associated with investing in such products, as detailed in an offering memorandum or similar document that is prepared by or on behalf of the issuer of the product. Inclusion of a security within an index is not a recommendation by Janus Index to buy, sell, or hold such security, nor is it considered to be investment advice. Janus Index does not guarantee the accuracy and/or completeness of any Janus index, any data included therein, or any data from which it is based, and shall have no liability for any errors, omissions, or interruptions therein. Janus Index makes no warranties, express or implied, as to results to be obtained from use of information provided by Janus Index and used in this service, and expressly disclaims all warranties of suitability with respect thereto. While Janus Index has obtained information believed to be reliable, Janus Index shall not be liable for any claims or losses of any nature in connection with information contained in this document, including but not limited to, lost profits or punitive or consequential damages, even if it is advised of the possibility of same.

Appendix I: Holiday Schedule

Holiday	2017	2018	2019
New Year's Day	2-Jan	1-Jan	1-Jan
Martin L. King Day	16-Jan	15-Jan	21-Jan
Presidents' Day	20-Feb	19-Feb	18-Feb
Good Friday	14-Apr	30-Mar	19-Apr
Easter Monday (UK)	17-Apr	-	-
Memorial Day	29-May	28-May	27-May
Independence Day	4-Jul	4-Jul	4-Jul
Labor Day	4-Sep	3-Sep	2-Sep
Columbus Day	-	8-Oct	14-Oct
Veterans Day	-	12-Nov	11-Nov
Thanksgiving	23-Nov	22-Nov	28-Nov
Christmas Day	25-Dec	25-Dec	25-Dec

Note: The Chicago Mercantile Exchange (CME) lists Columbus Day and Veterans' Day as holidays on their group holiday calendar website, however, for 2017 the CME publicly declared that these two days would be normal schedule (i.e. not treated as holidays). As a result, we have removed these days from the holiday schedule above. As for future years, CME may repeat the same procedure; if they do, we would not treat Columbus Day and Veterans' Day as holidays.